3.4.19 \(\int \frac {(a+b x^n)^p}{(c+d x^n)^3} \, dx\) [319]

Optimal. Leaf size=59 \[ \frac {x \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} F_1\left (\frac {1}{n};-p,3;1+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^3} \]

[Out]

x*(a+b*x^n)^p*AppellF1(1/n,-p,3,1+1/n,-b*x^n/a,-d*x^n/c)/c^3/((1+b*x^n/a)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {441, 440} \begin {gather*} \frac {x \left (a+b x^n\right )^p \left (\frac {b x^n}{a}+1\right )^{-p} F_1\left (\frac {1}{n};-p,3;1+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^n)^p/(c + d*x^n)^3,x]

[Out]

(x*(a + b*x^n)^p*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/(c^3*(1 + (b*x^n)/a)^p)

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^n\right )^p}{\left (c+d x^n\right )^3} \, dx &=\left (\left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p}\right ) \int \frac {\left (1+\frac {b x^n}{a}\right )^p}{\left (c+d x^n\right )^3} \, dx\\ &=\frac {x \left (a+b x^n\right )^p \left (1+\frac {b x^n}{a}\right )^{-p} F_1\left (\frac {1}{n};-p,3;1+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(180\) vs. \(2(59)=118\).
time = 0.32, size = 180, normalized size = 3.05 \begin {gather*} \frac {a c (1+n) x \left (a+b x^n\right )^p F_1\left (\frac {1}{n};-p,3;1+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )}{\left (c+d x^n\right )^3 \left (b c n p x^n F_1\left (1+\frac {1}{n};1-p,3;2+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )-3 a d n x^n F_1\left (1+\frac {1}{n};-p,4;2+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )+a c (1+n) F_1\left (\frac {1}{n};-p,3;1+\frac {1}{n};-\frac {b x^n}{a},-\frac {d x^n}{c}\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*x^n)^p/(c + d*x^n)^3,x]

[Out]

(a*c*(1 + n)*x*(a + b*x^n)^p*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)])/((c + d*x^n)^3*(
b*c*n*p*x^n*AppellF1[1 + n^(-1), 1 - p, 3, 2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] - 3*a*d*n*x^n*AppellF1[1 +
n^(-1), -p, 4, 2 + n^(-1), -((b*x^n)/a), -((d*x^n)/c)] + a*c*(1 + n)*AppellF1[n^(-1), -p, 3, 1 + n^(-1), -((b*
x^n)/a), -((d*x^n)/c)]))

________________________________________________________________________________________

Maple [F]
time = 0.10, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \,x^{n}\right )^{p}}{\left (c +d \,x^{n}\right )^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*x^n)^p/(c+d*x^n)^3,x)

[Out]

int((a+b*x^n)^p/(c+d*x^n)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="maxima")

[Out]

integrate((b*x^n + a)^p/(d*x^n + c)^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="fricas")

[Out]

integral((b*x^n + a)^p/(d^3*x^(3*n) + 3*c*d^2*x^(2*n) + 3*c^2*d*x^n + c^3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{n}\right )^{p}}{\left (c + d x^{n}\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x**n)**p/(c+d*x**n)**3,x)

[Out]

Integral((a + b*x**n)**p/(c + d*x**n)**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*x^n)^p/(c+d*x^n)^3,x, algorithm="giac")

[Out]

integrate((b*x^n + a)^p/(d*x^n + c)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {{\left (a+b\,x^n\right )}^p}{{\left (c+d\,x^n\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^n)^p/(c + d*x^n)^3,x)

[Out]

int((a + b*x^n)^p/(c + d*x^n)^3, x)

________________________________________________________________________________________